Identification of Hepatic Niche Harboring Human Acute Lymphoblastic Leukemic Cells via the SDF-1/CXCR4 Axis

نویسندگان

  • Itaru Kato
  • Akira Niwa
  • Toshio Heike
  • Hisanori Fujino
  • Megumu K. Saito
  • Katsutsugu Umeda
  • Hidefumi Hiramatsu
  • Mamoru Ito
  • Makiko Morita
  • Yoko Nishinaka
  • Souichi Adachi
  • Fumihiko Ishikawa
  • Tatsutoshi Nakahata
چکیده

In acute lymphoblastic leukemia (ALL) patients, the bone marrow niche is widely known to be an important element of treatment response and relapse. Furthermore, a characteristic liver pathology observed in ALL patients implies that the hepatic microenvironment provides an extramedullary niche for leukemic cells. However, it remains unclear whether the liver actually provides a specific niche. The mechanism underlying this pathology is also poorly understood. Here, to answer these questions, we reconstituted the histopathology of leukemic liver by using patients-derived primary ALL cells into NOD/SCID/Yc (null) mice. The liver pathology in this model was similar to that observed in the patients. By using this model, we clearly demonstrated that bile duct epithelial cells form a hepatic niche that supports infiltration and proliferation of ALL cells in the liver. Furthermore, we showed that functions of the niche are maintained by the SDF-1/CXCR4 axis, proposing a novel therapeutic approach targeting the extramedullary niche by inhibition of the SDF-1/CXCR4 axis. In conclusion, we demonstrated that the liver dissemination of leukemia is not due to nonselective infiltration, but rather systematic invasion and proliferation of leukemic cells in hepatic niche. Although the contribution of SDF-1/CXCR4 axis is reported in some cancer cells or leukemic niches such as bone marrow, we demonstrated that this axis works even in the extramedullary niche of leukemic cells. Our findings form the basis for therapeutic approaches that target the extramedullary niche by inhibiting the SDF-1/CXCR4 axis.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Inhibition of CXCR4 with the novel RCP168 peptide overcomes stroma-mediated chemoresistance in chronic and acute leukemias.

The chemokine receptor CXCR4 mediates the migration of hematopoietic cells to the stroma-derived factor 1alpha (SDF-1alpha)-producing bone marrow microenvironment. Using peptide-based CXCR4 inhibitors derived from the chemokine viral macrophage inflammatory protein II, we tested the hypothesis that the inhibition of CXCR4 increases sensitivity to chemotherapy by interfering with stromal/leukemi...

متن کامل

SDF-1-CXCR4 axis: cell trafficking in the cancer stem cell niche of head and neck squamous cell carcinoma.

Stromal cell-derived factor-1α (SDF-1α), also known as CXCL12, has variable effects on a plurality of cells. CXCR4 has been identified as its corresponding receptor. The SDF-1-CXCR4 axis is postulated to be a crucial key pathway in the interaction between (cancer) stem cells and their surrounding supportive cells in the cancer stem cell niche. We evaluated the expression of CD44 as a cancer ste...

متن کامل

Antileukemia activity of the novel peptidic CXCR4 antagonist LY2510924 as monotherapy and in combination with chemotherapy.

Targeting the stromal cell-derived factor 1α (SDF-1α)/C-X-C chemokine receptor type 4 (CXCR4) axis has been shown to be a promising therapeutic approach to overcome chemoresistance in acute myeloid leukemia (AML). We investigated the antileukemia efficacy of a novel peptidic CXCR4 antagonist, LY2510924, in preclinical models of AML. LY2510924 rapidly and durably blocked surface CXCR4 and inhibi...

متن کامل

POL5551, a novel and potent CXCR4 antagonist, enhances sensitivity to chemotherapy in pediatric ALL.

The importance of the cell surface receptor CXCR4 and the chemokine stromal cell-derived factor-1 (SDF-1/CXCL12) is well-established in normal and malignant hematopoiesis. The Protein Epitope Mimetic POL5551 is a novel and potent antagonist of CXCR4. POL5551 efficiently mobilizes hematopoietic stem and progenitor cells, but its effects in acute lymphoblastic leukemia (ALL) have not been reporte...

متن کامل

Plerixafor as a chemosensitizing agent in pediatric acute lymphoblastic leukemia: efficacy and potential mechanisms of resistance to CXCR4 inhibition

In spite of advances in the treatment of pediatric acute lymphoblastic leukemia (ALL), a significant number of children with ALL are not cured of their disease. We and others have shown that signaling from the bone marrow microenvironment confers therapeutic resistance, and that the interaction between CXCR4 and stromal cell-derived factor-1 (SDF-1 or CXCL12) is a key mediator of this effect. W...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2011